Abstract

We employed intracoronary infusion of adenosine deaminase to test the hypothesis that endogenous adenosine contributes to regulation of coronary blood flow following acute reductions in coronary artery pressure. In 16 closed-chest anesthetized dogs, we perfused the left circumflex coronary artery from a pressurized arterial reservoir and measured coronary blood flow following changes in perfusion pressure before and 10 minutes after the start of intracoronary adenosine deaminase, 5 U/min per kg body weight. Parallel studies showed that this dose of enzyme resulted in cardiac lymph adenosine deaminase concentrations of 3.2 +/- 0.4 U/ml. Adenosine deaminase abolished the vasodilator response to intracoronary adenosine, 4 and 8 micrograms, but had no effect on the vasodilator response to intracoronary papaverine, 200 and 300 micrograms, demonstrating enzyme efficacy and specificity. Additional experiments demonstrated that adenosine deaminase reversibly attenuated myocardial reactive hyperemia following 5- and 10-second coronary occlusions by 30% (P less than 0.05), evidence that the infused enzyme effectively degraded endogenous adenosine. However, adenosine deaminase did not alter the time course for coronary autoregulation or the steady state autoregulatory flow response over the pressure range between 125 and 75 mm Hg. Further, adenosine deaminase did not alter steady state coronary flow when perfusion pressure was reduced below the range for effective autoregulation (60-40 mm Hg). Such results show that adenosine is not essential for either coronary autoregulation or for the maintenance of coronary vasodilation when autoregulatory vasodilator reserve is expended.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.