Abstract

Organic adlayers on inorganic substrates often contain adatoms, which can be incorporated within the adsorbed molecular species, forming two-dimensional metal–organic frameworks at the substrate surface. The interplay between native adatoms and adsorbed molecules significantly changes various adlayer properties such as the adsorption geometry, the bond strength between the substrate and the adsorbed species, or the work function at the interface. Here, we use dispersion-corrected density functional theory to gain insight into the energetics that drive the incorporation of native adatoms within molecular adlayers based on the prototypical, experimentally well-characterized system of F4TCNQ on Au(111). We explain the adatom-induced modifications in the adsorption geometry and the adsorption energy based on the electronic structure and charge transfer at the interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.