Abstract
We investigated the potential role of ADAMTS-1 (a disintegrin and metalloprotease with thrombospondin motif type I) in atherogenesis. ADAMTS-1 is expressed at the highest levels in the aorta when compared with other human tissues examined. Immunolocalization studies in human aorta and coronary artery indicate that ADAMTS-1 expression is mainly seen at low levels in the medial layer, but upregulated in the intima when plaque is present. We found that ADAMTS-1 mRNA levels are significantly higher in proliferating/migrating cultured primary aortic vascular smooth muscle cells (VSMCs) compared with resting/confluent cells. Using the mouse carotid artery flow cessation model, we show that there are differences in vessel remodeling in ADAMTS-1 transgenic/apoE-deficient mice compared with apoE deficiency alone, particularly a significant increase in intimal hyperplasia. We show that ADAMTS-1 can cleave the large versican containing proteoglycan population purified from cultured human aortic VSMCs. Finally, using versican peptide substrates, we show data suggesting that ADAMTS-1 cleaves versican at multiple sites. We hypothesize that ADAMTS-1 may promote atherogenesis by cleaving extracellular matrix proteins such as versican and promoting VSMC migration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Arteriosclerosis, Thrombosis, and Vascular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.