Abstract

The effect of the actuation frequency on the manipulation of the global aerodynamic forces on lifting surfaces using surface-mounted fluidic actuators based on synthetic (zero mass flux) jet technology is demonstrated in wind-tunnel experiments. The effect of the actuation is investigated at two ranges of (dimensionless) jet formation frequencies of the order of, or well above, the natural shedding frequency. The vortical structures within the separated flow region vary substantially when the dimensionless actuation frequency F + is varied between O(1) and O(10). When F + is O(1), the reattachment is characterized by the formation of large vortical structures at the driving frequency that persist well beyond the trailing edge of the airfoil. The formation and shedding of these vortices leads to unsteady attachment and, consequently, to a time-periodic variation in vorticity flux and in circulation. Actuation at F + of O(10) leads to a complete flow reattachment that is marked by the absence of organized vortical structures along the flow surface

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.