Abstract

Context: The role of activation of lipid peroxidation in the mechanisms of acute methanol poisoning has not been studied.Objective: We measured the concentrations of lipid peroxidation markers in acutely intoxicated patients with known serum concentrations of methanol and leukotrienes.Methods: Blood serum samples were collected from 28 patients hospitalized with acute intoxication and from 36 survivors 2 years after discharge. In these samples, concentrations of 4-hydroxy-trans-2-hexenal (HHE), 4-hydroxynonenal (HNE), and malondialdehyde (MDA) were measured using the method of liquid chromatography-electrospray ionization-tandem mass spectrometry.Results: The maximum acute serum concentrations of all three lipid oxidative damage markers were higher than the follow-up serum concentrations: HNE 71.7 ± 8.0 ng/mL versus 35.4 ± 2.3 ng/mL; p < .001; HHE 40.1 ± 6.7 ng/mL versus 17.7 ± 4.1 ng/mL; p < .001; MDA 80.0 ± 7.2 ng/mL versus 40.9 ± 1.9 ng/mL; p < .001. The survivors without methanol poisoning sequelae demonstrated higher acute serum concentrations of the markers than the patients with sequelae. A correlation between measured markers and serum leukotrienes was present: HNE correlated with LTC4 (r = 0.663), LTD4 (r = 0.608), LTE4 (r = 0.771), LTB4 (r = 0.717), HHE correlated with LTC4 (r = 0.713), LTD4 (r = 0.676), LTE4 (r = 0.819), LTB4 (r = 0.746), MDA correlated with LTC4 (r = 0.785), LTD4 (r = 0.735), LTE4 (r = 0.814), LTB4 (r = 0.674); all p < .001. Lipid peroxidation markers correlated with anion gap (r= −0.428, −0.388, −0.334; p = .026, .045, .080 for HNE, HHE, MDA, respectively). The follow-up serum concentrations of lipid oxidation markers measured in survivors with and without visual/neurological sequelae 2 years after discharge did not differ.Conclusion: Our results demonstrate that lipid peroxidation plays a significant role in the mechanisms of acute methanol poisoning. The acute concentrations of three measured biomarkers were elevated in comparison with the follow-up concentrations. Neuronal membrane lipid peroxidation seems to activate leukotriene-mediated inflammation as a part of the neuroprotective mechanisms. No cases of persistent elevation were registered among the survivors 2 years after discharge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call