Abstract

Two lead fluorocarbonates, RbPbCO3F and CsPbCO3F, were synthesized and characterized. The materials were synthesized through solvothermal and conventional solid-state techniques. RbPbCO3F and CsPbCO3F were structurally characterized by single-crystal X-ray diffraction and exhibit three-dimensional (3D) crystal structures consisting of corner-shared PbO6F2 polyhedra. For RbPbCO3F, infrared and ultraviolet–visible spectroscopy and thermogravimetric and differential thermal analysis measurements were performed. RbPbCO3F is a new noncentrosymmetric material and crystallizes in the achiral and nonpolar space group P6̅m2 (crystal class 6̅m2). Powder second-harmonic generation (SHG) measurements on RbPbCO3F and CsPbCO3F using 1064 nm radiation revealed an SHG efficiency of approximately 250 and 300 × α-SiO2, respectively. Charge constants d33 of approximately 72 and 94 pm/V were obtained for RbPbCO3F and CsPbCO3F, respectively, through converse piezoelectric measurements. Electronic structure calculations indicate that the nonlinear optical response originates from the distorted PbO6F2 polyhedra, because of the even–odd parity mixing of the O 2p states with the nearly spherically symmetric 6s electrons of Pb2+. The degree of inversion symmetry breaking is quantified using a mode-polarization vector analysis and is correlated with cation size mismatch, from which it is possible to deduce the acentric properties of 3D alkali-metal fluorocarbonates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call