Abstract
The properties of a ferric ion-reducing system which catalyzes the reduction of ferric ion with elemental sulfur was investigated with a pure strain of Thiobacillus ferrooxidans. In anaerobic conditions, washed intact cells of the strain reduced 6 mol of Fe with 1 mol of elemental sulfur to give 6 mol of Fe, 1 mol of sulfate, and a small amount of sulfite. In aerobic conditions, the 6 mol of Fe produced was immediately reoxidized by the iron oxidase of the cell, with a consumption of 1.5 mol of oxygen. As a result, Fe production was never observed under aerobic conditions. However, in the presence of 5 mM cyanide, which completely inhibits the iron oxidase of the cell, an amount of Fe production comparable to that formed under anaerobic conditions was observed under aerobic conditions. The ferric ion-reducing system had a pH optimum between 2.0 and 3.8, and the activity was completely destroyed by 10 min of incubation at 60 degrees C. A short treatment of the strain with 0.5% phenol completely destroyed the ferric ion-reducing system of the cell. However, this treatment did not affect the iron oxidase of the cell. Since a concomitant complete loss of the activity of sulfur oxidation by molecular oxygen was observed in 0.5% phenol-treated cells, it was concluded that the ferric ion-reducing system plays an important role in the sulfur oxidation activity of this strain, and a new sulfur-oxidizing route is proposed for T. ferrooxidans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.