Abstract

Mycelial enzyme extracts of Schizophyllum commune were prepared during vegetative growth matings leading to common-A and common-B heterokaryons and the dikaryon, and were examined for hydrolytic activity against an alkaliinsoluble cell-wall glucan (R-glucan) isolated from this mushroom. In extracts from several individual homokaryotic mycelia the R-glucanase activity was low and did not increase when the cultures exhausted glucose in the medium. In common-A matings, a 30-fold increase in specific activity of intracellular R-glucanase was found even in the presence of glucose in the broth. An increase of this magnitude was not observed in the common-B mating nor in the fully compatible cross leading to the dikaryon. Extracts of the dikaryon did show elevated R-glucanase activity after exogenous glucose disappearance and subsequent fruiting. In none of these situations was an enzyme activity detected towards an alkali-soluble cell-wall glucan (S-glucan) prepared from S. commune. Changes in R-glucanase were not parallelled by identical changes in laminarinase, pustulanase, cellobiase, and p-nitrophenyl-beta-d-glucosidase, but comparable increases in specific activities were found for hydrolysis of glycogen and maltose. After interaction of the various mycelia in mating combinations, the S-glucan/R-glucan ratio of the cell wall of the dikaryon was found to be similar to that of the homokaryons, but increased in the common-B interaction and was elevated almost threefold in the common-A heterokaryon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.