Abstract
Monocyte chemoattractant protein (MCP)-1 plays a key role in atherosclerosis and inflammation associated with visceral adiposity by inducing mononuclear cell migration. Evidence shows that mouse peritoneal macrophages (MPM) express a 12-lipoxygenase (12/15-LO) that has been clearly linked to accelerated atherosclerosis in mouse models and increased monocyte endothelial interactions in both rodent and human cells. However, the role of 12/15-LO products in regulating MCP-1 expression in macrophages has not been clarified. In this study, we tested the role of 12/15-LO products using MPM and the mouse macrophage cell line, J774A.1 cells. We found that 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE] increased MCP-1 mRNA and protein expression in J774A.1 cells and MPM. In contrast, 12(R)-HETE, a lipid not derived from 12/15-LO, did not affect MCP-1 expression. 15(S)-HETE also increased MCP-1 mRNA expression, but the effect was less compared with 12(S)-HETE. MCP-1 mRNA expression was upregulated in a macrophage cell line stably overexpressing 12/15-LO (Plox-86 cells) and in MPM isolated from a 12/15-LO transgenic mouse. In addition, the expression of MCP-1 was downregulated in MPM isolated from 12/15-LO knockout mice. 12(S)-HETE-induced MCP-1 mRNA expression was attenuated by specific inhibitors of protein kinase C (PKC) and p38 mitogen-activated protein kinase (p38). 12(S)-HETE also directly activated NADPH oxidase activity. Two NADPH oxidase inhibitors, apocynin and diphenyleneiodonium chloride, blocked 12(S)-HETE-induced MCP-1 mRNA. Apocynin attenuated 12(S)-HETE-induced MCP-1 protein secretion. These data show that 12(S)-HETE increases MCP-1 expression by inducing PKC, p38, and NADPH oxidase activity. These results suggest a potentially important mechanism linking 12/15-LO activation to MCP-1 expression that induces inflammatory cell infiltration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.