Abstract

Exposure of cells to adenosine receptor (AR) agonists leads to receptor uncoupling from G proteins and downregulation of the A(1)AR. The receptor levels on the cell surface generally recover on withdrawal of the agonist, because of either translocation of the sequestered A(1)AR back to plasma membrane or de novo synthesis of A(1)AR. To examine the mechanism(s) underlying A(1)AR downregulation and recovery, we treated ductus deferens tumor (DDT(1) MF-2) cells with the agonist R-phenylisopropyladenosine (R-PIA) and showed a decrease in membrane A(1)AR levels by 24 h, which was associated with an unexpected 11-fold increase in A(1)AR mRNA. Acute exposure of these cells to R-PIA resulted in a rapid translocation of beta-arrestin1 to the plasma membrane. Knockdown of beta-arrestin1 by short interfering RNA (siRNA) blocked R-PIA-mediated downregulation of the A(1)AR, suppressed R-PIA-dependent ERK1/2 and activator protein-1 (AP-1) activity, and reduced the induction of A(1)AR mRNA. Withdrawal of the agonist after a 24-h exposure resulted in rapid recovery of plasma membrane A(1)AR. This was dependent on the de novo protein synthesis and on the activity of ERK1/2 but independent of beta-arrestin1 and nuclear factor-kappaB. Together, these data suggest that exposure to A(1)AR agonist stimulates ERK1/2 activity via beta-arrestin1, which subserves receptor uncoupling and downregulation, in addition to the induction of A(1)AR expression. We propose that such a pathway ensures both the termination of the agonist signal and recovery by priming the cell for rapid de novo synthesis of A(1)AR once the drug is terminated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.