Abstract

Mitosis requires cyclin-dependent kinase (cdk) 1-cyclin B activity [1]. Exit from mitosis depends on the inactivation of the complex by the degradation of cyclin B [2]. Cdk2 is also active during mitosis [3, 4]. In Xenopus egg extracts, cdk2 is primarily in complex with cyclin E, which is stable [5]. At the end of mitosis, downregulation of cdk2-cyclin E activity is accompanied by inhibitory phosphorylation of cdk2 [6]. Here, we show that cdk2-cyclin E activity maintains cdk1-cyclin B during mitosis. At mitosis exit, cdk2 is inactivated prior to cdk1. The loss of cdk2 activity follows and depends upon an increase in protein kinase A (PKA) activity. Prematurely inactivating cdk2 advances the time of cyclin B degradation and cdk1 inactivation. Blocking PKA, instead, stabilizes cdk2 activity and inhibits cyclin B degradation and cdk1 inactivation. The stabilization of cdk1-cyclin B is also induced by a mutant cdk2-cyclin E complex that is resistant to inhibitory phosphorylation. P21-Cip1, which inhibits both wild-type and mutant cdk2-cyclin E, reverses mitotic arrest under either condition. Our findings indicate that the proteolysis-independent downregulation of cdk2 activity at the end of mitosis depends on PKA and is required to activate the proteolysis cascade that leads to mitosis exit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call