Abstract

Neurally evoked muscle electrical activity suppresses nicotinic acetylcholine receptor (nAChR) gene expression in extrajunctional domains of adult muscle fibers. It has been proposed that this regulation is mediated by calcium influx through voltage-dependent L-type calcium channels but bypasses the sarcoplasmic reticulum in chick and mouse C2C12 cells. Here we report that in rat muscle calcium influx through L-type calcium channels preferentially reduced nAChR epsilon-subunit RNA via a post-transcriptional mechanism. In contrast, calcium release from the sarcoplasmic reticulum (SR) suppressed nAChR subunit RNA levels as a result of decreasing nAChR subunit promoter activity. Finally, we show that this decreased promoter activity is mediated through the same DNA sequences that control activity-dependent gene expression. Therefore, we propose that in rat muscle, calcium release from the SR participates in coupling muscle depolarization to nAChR gene expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call