Abstract

The translocation of tRNA and mRNA through the ribosome is promoted by elongation factor G (EF-G), a GTPase that hydrolyzes GTP during the reaction. Recently, it was reported that, in contrast to previous observations, the affinity of EF-G was much weaker for GTP than for GDP and that ribosome-catalyzed GDP-GTP exchange would be required for translocation [Zavialov AV, Hauryliuk VV, Ehrenberg M (2005) J Biol 4:9]. We have reinvestigated GTP/GDP binding and show that EF-G binds GTP and GDP with affinities in the 20 to 40 microM range (37 degrees C), in accordance with earlier reports. Furthermore, GDP exchange, which is extremely rapid on unbound EF-G, is retarded, rather than accelerated, on the ribosome, which, therefore, is not a nucleotide-exchange factor for EF-G. The EF-G.GDPNP complex, which is very labile, is stabilized 30,000-fold by binding to the ribosome. These findings, together with earlier kinetic results, reveal that EF-G enters the pretranslocation ribosome in the GTP-bound form and indicate that, upon ribosome-complex formation, the nucleotide-binding pocket of EF-G is closed, presumably in conjunction with GTPase activation. GTP hydrolysis is required for rapid tRNA-mRNA movement, and P(i) release induces further rearrangements of both EF-G and the ribosome that are required for EF-G turnover.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.