Abstract

It was hypothesized that vascular endothelial growth factor (VEGF) in fibroblasts participates in aseptic loosening of total hip replacement (THR) implants. Therefore, osteoarthritic (OA) samples (n = 11) were compared with synovial membrane-like interface tissues from revision THR (n = 10). VEGF-A and its receptors were stained using streptavidin-immunoperoxidase method. Their regulation by hypoxia and cytokines were studied in cultured fibroblasts using quantitative real-time polymerase chain reaction (qRT-PCR). VEGFR1(+) lining cells (p < 0.01), stromal fibroblast-like cells (p = 0.001) and stromal macrophage-like cells (p < 0.05) were more numerous in rTHR than in OA. As to VEGFR2(+), only stromal fibroblast-like cells in rTHR outnumbered those found in OA (p < 0.05). VEGFRs in synovial fibroblasts were not affected by hypoxia, but VEGF increased 2.4-fold (p < 0.05). Interleukin-4 up-regulated VEGFR1 expression 23-fold. This is the first study to describe a difference between rTHR and OA in VEGF receptors, particularly VEGFR1. Hypoxia increased VEGF, but the VEGFR1 increase in the lining and stroma is probably IL-4 driven, in accordance with the M2-type macrophage dominance in interface tissues. VEGF/VEGFR system is also affected by hypoxia and may play a role in angiogenesis and bone pathology in aseptic loosening of total hip implants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call