Abstract

It is necessary for the cell-cycle machinery of neurons to be suppressed to promote differentiation and maintenance of their terminally differentiated state. Reactivation of the cell cycle in response to neurotoxic insults leads to neuronal cell death and some cell-cycle-related proteins contribute to the process. p27 kip1 (p27), an inhibitor of cyclin-dependent kinases, prevents unwarranted cyclin-dependent kinase activation. In this study, we have elucidated a novel mechanism via which p27 promotes apoptosis of neurons stimulated by neurotoxic amyloid peptide Aβ42 (Amyloid β1-42 peptide). Co-immunoprecipitation analysis revealed that p27 promotes interaction between Cyclin-dependent kinase 5 (Cdk5) and cyclin D1, which is induced by Aβ42 in cortical neurons. As a result, Cdk5 is sequestered from its neuronal activator p35 resulting in kinase deactivation. The depletion of p27, which was achieved by specific siRNA, restored Cdk5/p35 interaction by preventing association between Cdk5 and cyclin D1 and also abrogated Aβ42 induced apoptosis of cortical neurons. Furthermore, analysis of cell cycle markers suggested that p27 may play a role in Aβ42 induced aberrant cell cycle progression of neurons, which may result in apoptosis. These findings provide novel insights into how p27, which otherwise performs important neuronal functions, may become deleterious to neurons under neurotoxic conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call