Abstract

Although some studies reported the impact of black carbon (BC) on the climate over the Tibetan Plateau (TP), the contribution and mechanisms of BC affecting the water vapor transport to Tibet are not fully understood yet. Here, utilizing the satellite observations and reanalysis data, the effects of BC on the climate over the TP and water vapor transport to the Tibet were investigated by the Community Earth System Model (CESM 2.1.0). Due to the addition of BC, a positive net heat forcing (average is 0.39 W/m2) is exerted at the surface, which induces a pronounced warming effect over the TP and consequently intensifies the East Asian Summer monsoon (EASM). However, significant cooling effects in northern India, Pakistan, Afghanistan and Iran are induced due to the BC and related feedbacks, which reduces significantly the meridional land–sea thermal contrast and finally weakens the South Asian summer monsoon (SASM). Consequently, the water vapor transport to the south border is decreased due to addition of BC. Moreover, through affecting the atmospheric circulation, the BC could induce an increase in the imported water vapor from the west and east borders of the TP, and an increase outflowing away from the north border of the TP. Overall, due to the BC, the annual mean net importing water vapor over TP is around 271 Gt, which could enhance the precipitation over the TP. The results show that the mean increase in the precipitation over TP is about 0.56 mm/day.

Highlights

  • The black carbon (BC) aerosol emitted from the combustion of some biomass and fossil fuel has a strong “Greenhouse Effect” by absorbing solar radiation and longwave radiation [1,2] in the atmosphere with a few days’ lifetime [3,4]

  • The BC could significantly affect the climate over the Tibetan Plateau (TP) especially in the summer

  • We have estimated the results of BC affecting the water vapor transport, and we have revealed the concerning mechanism

Read more

Summary

Introduction

The black carbon (BC) aerosol emitted from the combustion of some biomass and fossil fuel has a strong “Greenhouse Effect” by absorbing solar radiation and longwave radiation [1,2] in the atmosphere with a few days’ lifetime [3,4]. The BC can affect the earth–atmosphere energy balance through indirect and semi-direct effects [5], having a profound influence on the hydrological cycle and climate [2,6,7]. The uncertainties in estimating the magnitude of the hydrological cycle and regional climate responses to the BC are still pronounced [8]. The aerosol emissions, including the BC over Asia are obviously increasing, and these particles can be transported to the Tibetan Plateau (TP) by atmospheric circulations [9,10,11]. The BC could be deposited into snow and exert a pronounced “snow darking” effect [12], and further affect the radiation budget [13,14]. The BC over the TP can affect the properties of cloud [20,21,22], precipitation [22,23,24] and the monsoon circulations [25]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.