Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder of unknown etiology that occurs in women of reproductive age. Despite being considered to affect up to one-fifth of women in this cohort, the condition lacks generally accepted diagnostic biomarkers and options for targeted therapy. Hereby, we analyzed the diagnostic, therapeutic, and functional potential of a recently discovered miR-335-5p that was observed to be reduced in the follicular fluid (FF) of PCOS patients as compared with healthy women. We found miR-335-5p to be significantly decreased in the serum and FF samples of PCOS patients (n=40) vs healthy women (n=30), as well as in primary human granulosa cells (hGCs), and in 3 different hormonally induced PCOS-like murine models vs. wild-type (WT) mice. The level of circulating miR-335-5p was found to significantly correlate with the impaired endocrine and clinical features associated with PCOS in human patients. Ovarian intrabursal injection of the miR-335-5p antagomir in WT mice ovaries induced a PCOS-like reproductive phenotype. Treatment with the miR-335-5p agomir rescued the dihydrotestosterone-induced PCOS-phenotype in mice, thereby providing a functional link between miR-335-5p and PCOS. We identified SP1 as a miR-335-5p target gene by using the dual-luciferase reporter assay. Both the luciferase reporter assay and chromatin immunoprecipitation assay showed that SP1 bound to the promoter region of human CYP19A1 and inhibited its transcription. miR-335-5p increased the production of estradiol via the SP1/CYP19A1 axis in hGCs, thereby suggesting its mechanistic pathway of action. In conclusion, these results provide evidence that miR-335-5p may function as a mediator in the etiopathogenesis of PCOS, as well as has the potential as both a novel diagnostic biomarker and therapeutic target for PCOS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.