Abstract

We study the properties of the chaotic wave fields generated in the frame of the Sasa-Satsuma equation (SSE). Modulation instability results in a chaotic pattern of small-scale filaments with a free parameter-the propagation constant k. The average velocity of the filaments is approximately given by the group velocity calculated from the dispersion relation for the plane-wave solution. Remarkably, our results reveal the reason for the skewed profile of the exact SSE rogue-wave solutions, which was one of their distinctive unexplained features. We have also calculated the probability density functions for various values of the propagation constant k, showing that probability of appearance of rogue waves depends on k.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.