Abstract

In this paper we analyze the rogue wave spectra of the Kundu-Eckhaus equation (KEE). We compare our findings with their nonlinear Schrödinger equation (NLSE) analogs and show that the spectra of the individual rogue waves significantly differ from their NLSE analogs. A remarkable difference is the one-sided development of the triangular spectrum before the rogue wave becomes evident in time. Also we show that increasing the skewness of the rogue wave results in increased asymmetry in the triangular Fourier spectra. Additionally, the triangular spectra of the rogue waves of the KEE begin to develop at earlier stages of their development compared to their NLSE analogs, especially for larger skew angles. This feature may be used to enhance the early warning times of the rogue waves. However, we show that in a chaotic wave field with many spectral components the triangular spectra remain as the main attribute as a universal feature of the typical wave fields produced through modulation instability and characteristic features of the KEE's analytical rogue wave spectra may be suppressed in a realistic chaotic wave field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.