Abstract

Abstract In this article, we investigate a fourth-order nonlinear Schrödinger equation, which governs the Davydov solitons in the alpha helical protein with higher-order effects. By virtue of the generalised Darboux transformation, higher-order rogue-wave solutions are derived. Propagation and interaction of the rogue waves are analysed: (i) Coefficients affect the existence time of the first-order rogue waves; (ii) coefficients affect the interaction time of the second- and third-order rogue waves; (iii) direction of the rogue-wave propagation remain unchanged after interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.