Abstract
Rogue wave in a collisionless, unmagnetized electronegative plasma is investigated. For this purpose, the basic set of fluid equations is reduced to the Korteweg-de Vries (KdV) equation. However, when the frequency of the carrier wave is much smaller than the ion plasma frequency then the KdV equation is also used to study the nonlinear evolution of modulationally unstable modified ion-acoustic wavepackets through the derivation of the nonlinear Schrodinger (NLS) equation. In order to show that the characteristics of the rogue wave is influenced by the plasma parameters, the relevant numerical analysis of the NLS equation is presented. The relevance of our investigation to the Titan’s atmosphere is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.