Abstract

Docking mechanisms are an integral part of modular self-reconfigurable robot (MSR) systems, allowing multiple robot modules to attach to each other. An MSR should be equipped with robust and efficient docking interfaces to ensure enhanced autonomy and self-reconfiguration ability. Genderless docking is a necessary criterion to maintain homogeneity of the robot modules. This also enables self-healing of a modular robot system in the case of a failed module. The mechanism needs to be compact and lightweight and at the same time have sufficient strength to transfer loads from other connected modules. RoGenSiD is a rotary-plate genderless single sided docking mechanism that was designed to perform robustly and efficiently considering its application in unstructured terrains. The design methodology followed design for manufacture (DFM) and design for assembly (DFA) guidelines as well as considerations for minimal space and weight. As a result, this docking mechanism is applicable for multi-faceted docking in lattice-type, chain-type, or hybrid MSR systems. Bench-top testing validated the system performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call