Abstract

As the basis for screening drug candidates, the identification of drug-target interactions (DTIs) plays a crucial role in the innovative drugs research. However, due to the inherent constraints of small-scale and time-consuming wet experiments, DTI recognition is usually difficult to carry out. In the present study, we developed a computational approach called RoFDT to predict DTIs by combining feature-weighted Rotation Forest (FwRF) with a protein sequence. In particular, we first encode protein sequences as numerical matrices by Position-Specific Score Matrix (PSSM), then extract their features utilize Pseudo Position-Specific Score Matrix (PsePSSM) and combine them with drug structure information-molecular fingerprints and finally feed them into the FwRF classifier and validate the performance of RoFDT on Enzyme, GPCR, Ion Channel and Nuclear Receptor datasets. In the above dataset, RoFDT achieved 91.68%, 84.72%, 88.11% and 78.33% accuracy, respectively. RoFDT shows excellent performance in comparison with support vector machine models and previous superior approaches. Furthermore, 7 of the top 10 DTIs with RoFDT estimate scores were proven by the relevant database. These results demonstrate that RoFDT can be employed to a powerful predictive approach for DTIs to provide theoretical support for innovative drug discovery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.