Abstract

In this study, we report the successful demonstration of an intermediate-frequency-over-fiber (IFoF)–based radio access network (RAN) for 28 GHz millimeter-wave (mmWave)-based 5G mobile communication. In order to increase the network coverage of the mmWave-based 5G networks, we propose a distributed antenna system (DAS) that uses the IFoF technology. An IFoF-based DAS with 2 × 2 multiple-input multiple-output (MIMO) configuration was deployed in the PyeongChang area to provide 5G trial demonstration during the Winter Olympics. 5G trial services such as high-speed data transfer and autonomous vehicle driving were offered to the public through the IFoF-based DAS. A downlink throughput of ∼1 Gb/s and uplink throughput of ∼200 Mb/s were achieved in the DAS-deployed area. We also present an IFoF-based 5G mobile fronthaul that can overcome the bandwidth bottleneck in RANs. We performed real-time transmission of mmWave-based 5G wireless access networks using the IFoF-based mobile fronthaul. The real-time downlink throughput achieved per 5G terminal was approximately 9 Gb/s, when using a 4 × 4 MIMO configuration. An outdoor demonstration was performed to verify the technical feasibility of the 5G fronthaul based on IFoF technology. When moving the 5G terminal between remote radio heads at a speed less than 60 km/h, 5G mobile broadband services could be provided with real-time throughput more than 5 Gb/s. Thus, we confirmed that the IFoF technology was capable of supporting RANs for mmWave-based 5G networks and providing real-time multi-Gb mobile services.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call