Abstract
ABSTRACTRuthenium complexes with tridentate terpyridine type ligands have many structural advantages over the complexes with bipyridine ligands. Polynuclear ruthenium complexes prepared using these terpyridine ligands bridged with phenylene rings are potential candidates for photosensitization in dye-sensitized photovoltaic cells. In this study, we have carried out synthesis, characterization and theoretical modeling of rigid, rod-like homometallic dinuclear ruthenium complexes using terpyridine and bipyridine ligands. The photophysical and photovoltaic properties have been investigated. These supramolecular dyes are found to be efficient photosensitizers in dye-sensitized photovoltaic cells when a liquid electrolyte is employed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.