Abstract
Here we review the neurobiology of infant odor learning in rats, and discuss the unique role of the stress hormone corticosterone (CORT) in the learning necessary for the developing rat. During the first 9 postnatal (PN) days, infants readily learn odor preferences, while aversion and fear learning are attenuated. Such restricted learning may ensure that pups only approach their mother. This sensitive period of preference learning overlaps with the stress hyporesponsive period (SHRP, PN4-14) when pups have a reduced CORT response to most stressors. Neural underpinnings responsible for sensitive-period learning include increased activity within the olfactory bulb and piriform "olfactory" cortex due to heightened release of norepinephrine from the locus coeruleus. After PN10 and with the decline of the SHRP, stress-induced CORT release permits amygdala activation and facilitates learned odor aversions and fear. Remarkably, odor preference and attenuated fear learning can be reestablished in PN10-15 pups if the mother is present, an effect due to her ability to suppress pups' CORT and amygdala activity. Together, these data indicate that functional changes in infant learning are modified by a unique interaction between the developing CORT system, the amygdala, and maternal presence, providing a learning system that becomes more flexible as pups mature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.