Abstract

In Salmonella, the rod substructure of the flagellum is a periplasmic driveshaft that couples the torque generated by the basal body motor to the extracellular hook and filament. The rod subunits self-assemble, spanning the periplasmic space and stopping at the outer membrane when a mature length of ~22 nm is reached. Assembly of the extracellular hook and filament follow rod completion. Hook initiation requires that a pore forms in the outer membrane and that the rod-capping protein, FlgJ, dislodges from the tip of the distal rod and is replaced with the hook-capping protein, FlgD. Approximately 26 FlgH subunits form the L-ring around the distal rod that creates the pore through which the growing flagellum will elongate from the cell body. The function of the L-ring in the mature flagellum is also thought to act as a bushing for the rotating rod. Work presented here demonstrates that, in addition to outer membrane pore formation, L-ring formation catalyzes the removal of the FlgJ rod cap. Rod cap removal allows the hook cap to assemble at the rod tip and results in the transition from rod completion in the periplasm to extracellular hook polymerization. By coupling the rod-to-hook switch to outer membrane penetration, FlgH ensures that hook and filament polymerization is initiated at the appropriate spatial and temporal point in flagellar biosynthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call