Abstract

Zn alloy is recognized as a promising biodegradable metal for bone implant applications because of its good biocompatibility and moderate degradation rate. Nevertheless, the insufficient strength limits its applications. In this study, a rod-like eutectic structure was fabricated in Zn-Al-Sn alloy with the addition of Sn via selective laser melting. It was found that the Al-enriched phase nucleated primarily during cooling and caused the rapid precipitation of Zn. This inevitably consumed the liquid Zn and increased the ratio of Sn to Zn in the liquid phase, resulting in the formation of the eutectic, which was composed of the Sn-enriched phase and the Zn-enriched phase. More importantly, the coupled growth of the Sn-enriched and Zn-enriched phases and their volume differences together led to a rod-like morphology of the eutectic according to the volume fraction theory. Consequently, the yield and ultimate compressive strengths were enhanced to 180 ± 18.8 and 325 ± 29.6 MPa for the Zn-Al-2Sn alloy, respectively. This could be attributed to the pinning effect of the rod-like eutectic, which could block dislocation motion and result in dislocation pile-up, thereby conducing to the mechanical reinforcement. In addition, the Zn-Al-Sn alloy also exhibited good biocompatibility and increased degradation rate because of the enhanced galvanic corrosion. This study showed the potential of rod-like eutectic for the mechanical enhancement of the biodegradable Zn alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.