Abstract

ABSTRACT Several pieces of evidence suggest that silicate grains in primitive meteorites are not interstellar grains but condensates formed in the early solar system. Moreover, the size distribution of matrix grains in chondrites implies that these condensates might be formed as nanometer-sized grains. Therefore, we propose a novel scenario for rocky planetesimal formation in which nanometer-sized silicate grains are produced by evaporation and recondensation events in early solar nebula, and rocky planetesimals are formed via aggregation of these nanograins. We reveal that silicate nanograins can grow into rocky planetesimals via direct aggregation without catastrophic fragmentation and serious radial drift, and our results provide a suitable condition for protoplanet formation in our solar system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.