Abstract

A rocking-beam energy-dispersive X-ray (EDX) spectrum image was acquired near the [035] zone axis of a B2-ordered alloy of composition Ni{sub 50}Al{sub 40}Fe{sub 10}. Images comparable to those acquired by Rossouw et al. were formed a posteriori by integrating the X-ray intensities in windows enclosing the Al-K, Fe-K{sub {alpha}}, and Ni-K{sub {alpha}} characteristic X-ray peaks for each pixel of the spectrum image. These images are shown along with a bright-field transmission channeling pattern (TCP), which records the signal from the bright-field STEM detector as the incident beam direction is varied with the beam-tilt coils, and an EDX spectrum from one pixel of the image. The range of orientations from which the spectrum image was acquired is indicated by the square superimposed on the TCP. ALCHEMI (atom-location by channeling-enhanced microanalysis) was performed on a subset of the spectrum image using standard methods. Spectra from a series of {approximately}30 pixels along lines parallel to the (200) band were summed at each of 31 orientations relative to the band in the range 0 {le} {theta}/{theta}{sub 200} {le} 2.3. Characteristic X-ray intensities of the K-shell X-rays of Ni, Fe, and Al were extracted from the 31 summed spectra with the simplex fitting procedure ofmore » the DTSA spectral analysis software. The fraction of Fe on the `Ni`-site from this analysis, p{sub Fe`Ni`} = 23.8 {+-} 2.1%, is in excellent agreement with p{sub Fe`Ni`} = 23.7 {+-} 0.9%, which was determined by an analysis of a series of ten spectra acquired at orientations of the crystal carefully chosen so that the contributions of nonsystematic reflections are negligible.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call