Abstract

AbstractRecent experiments on a 2.44×2.44 m rigid timber wall panel with slip-friction connectors have demonstrated the feasibility of enabling elastoplastic behavior in structures that would otherwise be essentially rigid. The slip-friction connectors are adopted as the hold-downs that anchor the ends of the wall to the foundation. These replace the traditionally used steel bracket hold-downs, which relied on inelastic damage to the screw or nail connections for energy dissipation. Overturning resistance of the wall directly relates to the slip-force in the slip-friction connectors. On the slip-force being reached, the intention is that the wall rocks in a controlled manner. A numerical study demonstrates the energy dissipation advantages of this approach. A direct-displacement-based design procedure is proposed for a multistory wall with slip-friction connectors. The wall is numerically modeled, and its response to earthquake time-history loadings compared with that of an idealized structure with a sin...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call