Abstract

A ratchet effect (the rectification of an ac injected current) which is purely magnetic in origin has been observed in a superconducting-magnetic nanostructure hybrid. The hybrid consists of a superconducting Nb film in contact with an array of nanoscale magnetic triangles, circular rings, or elliptical rings. The arrays were placed into well-defined remanent magnetic states by application of different magnetic field cycles. The stray fields from these remanent states provide a magnetic landscape which influences the motion of superconducting vortices. We examined both randomly varying landscapes from demagnetized samples and ordered landscapes from samples at remanence after saturation in which the magnetic rings form parallel onion states containing two domain walls. The ratchet effect is absent if the rings are in the demagnetized state or if the vortices propagate parallel to the magnetic reflection symmetry axis (perpendicular to the magnetic domain walls) in the ordered onion state. On the other hand, when the vortices move perpendicular to the magnetic reflection symmetry axis in the ordered onion state (parallel to the domain walls) a clear ratchet effect is observed. This behavior differs qualitatively from that observed in samples containing arrays of triangular Ni nanostructures, which show a ratchet of structural origin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.