Abstract

Rockfalls are very rapid and damaging slope instability processes that affect mountainous regions, coastal cliffs and slope cuts. This contribution focuses on fragmental rockfalls in which the moving particles, particularly the largest ones, propagate following independent paths with little interaction among them. The prediction of the occurrence and frequency of the rockfalls has benefited by the rapid development of the techniques for the detection and the remote acquisition of the rock mass surface features such as the 3D laser scanner and the digital photogrammetry. These techniques are also used to monitor the deformation experienced by the rock mass before failure. The quantitative analysis of the fragmental rockfalls is a useful approach to assess risk and for the design of both stabilization and protection measures. The analysis of rockfalls must consider not only the frequency and magnitude of the potential events but also the fragmentation of the detached rock mass. The latter is a crucial issue as it affects the number, size and the velocity of the individual rock blocks. Several case studies of the application of the remote acquisition techniques for determining the size and frequency of rockfall events and their fragmentation are presented. The extrapolation of the magnitude-frequency relationships is discussed as well as the role of the geological factors for constraining the size of the largest detachable mass from a cliff. Finally, the performance of a fractal fragmentation model for rockfalls is also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call