Abstract

BackgroundIt has been reported that ROCK1 participates in the progression of multiple diseases, including septic intestinal barrier, cardiac dysfunction and acute lung injury. However, its regulatory role and specific mechanism in sepsis-induced acute kidney injury (AKI) remain unclear. MethodsCecal ligation puncture (CLP) was conducted to establish sepsis mouse model, and in vitro model was achieved by lipopolysaccharide (LPS) stimulation. Genes expression was evaluated by qRT-PCR, western blot or ELISA was conducted to assess the levels of proteins. Hoechst staining was performed to evaluate cell pyroptosis. LDH activity assay was detected to assess cytotoxicity. Immunohistochemistry was conducted to detect Ly-6G expression and neutrophils distribution in kidney tissues of mice. H&E and TUNEL staining were carried to evaluate kidney injury of mice. ResultsOur findings illuminated that ROCK1 was highly expressed in sepsis-induced AKI, and ROCK1 knockdown inhibited NLRP3-mediated cell pyroptosis in LPS-induced HK-2 cells. Moreover, ROCK1 modulated HK-2 cell pyroptosis by regulating endoplasmic reticulum stress (ERS). TLR2 inhibitor could suppress ERS mediated cell pyroptosis under LPS treatment. Further, TLR2 activator partially reversed the effects of ROCK1 inhibition on ERS mediated pyroptosis in LPS-treated HK-2 cells and CLP mice. ConclusionIn conclusion, ROCK1 may regulate sepsis-induced AKI via TLR2-mediated ERS/pyroptosis axis. Our data demonstrated the role and underlying mechanism of ROCK1 in septic AKI, providing theoretical basis for sepsis-induced AKI treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.