Abstract

Samples of manganiferous rock varnish collected from fluvial, bedrock outcrop and Erie Barge Canal settings in New York state host a variety of diatom, fungal and bacterial microbial forms that are enhanced in manganese and iron. Use of a Dual-Beam Focused Ion Beam Scanning Electron Microscope to manipulate the varnish in situ reveals microbial forms that would not have otherwise been identified. The relative abundance of Mn–Fe-enriched biotic forms in New York samples is far greater than varnishes collected from warm deserts. Moisture availability has long been noted as a possible control on varnish growth rates, a hypothesis consistent with the greater abundance of Mn-enhancing bioforms. Sub-micron images of incipient varnish formation reveal that varnishing in New York probably starts with the mortality of microorganisms that enhanced Mn on bare mineral surfaces; microbial death results in the adsorption of the Mn-rich sheath onto the rock in the form of filamentous networks. Clay minerals are then cemented by remobilization of the Mn-rich material. Thus, the previously unanswered question of what comes first – clay mineral deposition or enhancement of Mn – can be answered in New York because of the faster rate of varnish growth. In contrast, very slow rates of varnishing seen in warm deserts, of microns per thousand years, make it less likely that collected samples will reveal varnish accretionary processes than samples collected from fast-accreting moist settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.