Abstract

The Bergell intrusion (European Alps) was one of the first locations where thermochronometry was used to resolve changes in erosion rate, yet, relating these changes to variations in climate or in local tectonics remains challenging. One approach that enables changes in erosion rate to be related to changes in climate or rock uplift rate is to utilize landscape evolution models, as topographic response to these forcing parameters is unique. Furthermore, low temperature thermochronometric systems have the potential to resolve topography through time and thus topographic response. We present new (U-Th)/He data for samples collected across 2 km of relief from the Bergell. The ages range from ∼2 to ∼16 Ma and define an age elevation with an apparent exhumation rate of 0.1 km/Myr. In order to infer erosion rates, we use a thermokinematic model to solve the heat equation in the crust, track material points through time and predict thermochronometric data. Paleo-topography and erosion rate are parameterized using the stream power model. We find that rock uplift rates were 0.4 km/Myr from ∼25 to ∼20 Ma and subsequently decreased to 0.05 km/Myr. This results in a gradual decrease in erosion rate from rates of 0.4 to 0.1 km/Myr. A recent increase in rock uplift rate at ∼4 Ma to ∼0.6 km/Myr is required to explain the youngest ages and high topographic relief.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call