Abstract

During the construction and operation of gas storage reservoirs, changes in the principal stress direction can induce fracture propagation under conditions of lower differential stress, potentially leading to failure in the surrounding rock. However, the weakening of strength due to pure stress rotation has not yet been investigated. Based on fracture mechanics, an enhanced Mohr-Coulomb strength criterion considering stress rotation is proposed and verified with experimental and numerical simulations. The micro-damage state and the evolution of the rock under the pure stress-rotation condition are analyzed. The findings indicate that differential stress exceeding the crack initiation stress is a prerequisite for stress rotation to promote the development of rock damage. As the differential stress increases, stress rotation is more likely to induce rock damage, leading to a transition from brittle to plastic failure, characterized by wider fractures and a more complex fracture network. Overall, a negative exponential relationship exists between the stress rotation angle required for rock failure and the differential stress. The feasibility of applying the enhanced criterion to practical engineering is discussed using monitoring data obtained from a mine-by tunnel. This study introduces new concepts for understanding the damage evolution of the surrounding rock under complex stress paths and offers a new theoretical basis for predicting the damage of gas storage reservoirs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.