Abstract

In west Texas, fractured-chert reservoirs of Devonian age have produced more than 700 million barrels of oil. About the same amount of mobile petroleum remains in place. These reservoirs are characterized by microporosity; they are heterogeneous and compartmented, which results in recovery of less than 30% of the oil in place. In this case study the objective was to use cores, petrophysical logs, rock physics, and seismic attributes to characterize porosity and field-scale fractures. The relations among porosity, velocity, and impedance were explored and also reactions among production, impedance, and lineaments observed in 3D attribute volumes. Laboratory core data show that Gassmann’s fluid-substitution equation works well for microporous tripolitic chert. Also, laboratry measurements show excellent linear correlation between P-wave impedance and porosity. Volumetric calculations of reflector curvature and seismic inversion of acoustic impedance were combined to infer distribution of lithofacies and fractures and to predict porosity. Statistical relations were established between P-wave velocity and porosity measured from cores, between P-wave impedance and producing zones, and between initial production rates and seismic “fracture lineaments.” The strong quantitative correlation between thick-bedded chert lithofacies and seismic impedance was used to map the reservoir. A qualitative inverse relation between the first [Formula: see text] of production and curvature lineaments was documented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.