Abstract

Abstract Archaeointensity and rock-magnetic studies were undertaken on 49 baked clay artefacts from four archaeological sites (Ter, Junnar, Nalasopara and Kanheri) in Maharashtra, India. Rock-magnetic properties, including bulk magnetic susceptibility, magnetic remanence and thermomagnetic analysis, indicate the presence of a low-coercivity magnetite in fine (superparamagnetic, single domain) grain-sizes. The ratio of anhysteretic remanent magnetization to saturation isothermal remanent magnetization, the reversible high-temperature susceptibility curves and the 3-axes isothermal remanent magnetization tests also indicate that the artefacts dominantly possess fine-grained magnetic particles, carrying a stable thermoremanent magnetization (TRM). Archaeointensity was estimated using Coe's modified Thellier method corresponding to the linear behaviour of natural remanent magnetization loss and TRM gained plots, which were evaluated with ThellierTool4.0 software. Cooling rate and anisotropy of the TRM corrections were applied and the corrected intensities were used to calculate a mean archaeointensity value for each one of the four sites. The new archaeointensity values were plotted along the existing Indian archaeointensity values derived only from archaeological artefacts, and were compared with the SHA.DIF.14k and ARCH10k.1 global models’ predictions. The present study aims to improve the overall understanding of Indian geomagnetic field variation in the past by providing new high-quality archaeointensity results. However, still more archaeointensity values are required to develop a reliable secular variation curve for India.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.