Abstract

BackgroundPrevious studies suggested that the RhoA/ROCK pathway may contribute to vascular complications in diabetes. The present study was designed to investigate whether ROCK inhibitor fasudil could prevent high glucose-induced monocyte-endothelial cells adhesion, and whether this was related to fasudil effects on vascular endothelial cell expression of chemotactic factors, vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1).MethodsHUVECs were stimulated with high glucose (HG) or HG + fasudil in different concentration or different time. Monocyte-endothelial cell adhesion was determined using fluorescence-labeled monocytes. The mRNA and protein expression of VCAM-1 and MCP-1 were measured using real-time PCR and western blot. The protein levels of RhoA, ROCKI and p-MYPT were determined using western blot analysis. ELISA was employed to measure the expression of soluble VCAM-1 and MCP-1 in cell supernatants and human serum samples.ResultsFasudil significantly suppressed HG-induced adhesion of THP-1 to HUVECs. Fasudil reduced Rho/ROCK activity (as indicated by lower p-MYPT/MYPT ratio), and prevented HG induced increases in VCAM-1 and MCP-1 mRNA and protein levels. Fasudil also decreased MCP-1 concentration in HUVEC supernatants, but increased sVCAM-1 shedding into the media. In human diabetic subjects, 2 weeks of fasudil treatment significantly decreased serum MCP-1 level from 27.9 ± 10.6 pg/ml to 13.8 ± 7.0 pg/ml (P < 0.05), while sVCAM-1 increased from 23.2 ± 7.5 ng/ml to 39.7 ± 5.6 ng/ml after fasudil treatment (P < 0.05).ConclusionsTreatment with the Rho/ROCK pathway inhibitor fasudil attenuated HG-induced monocyte-endothelial cell adhesion, possibly by reducing endothelial expression of VCAM-1 and MCP-1. These results suggest inhibition of Rho/ROCK signaling may have therapeutic potential in preventing diabetes associated vascular inflammation and atherogenesis.

Highlights

  • Macrovascular complications including atherosclerosis are the leading causes of morbidity and mortality in patients with diabetes mellitus [1]

  • Fasudil inhibited the high glucose (HG)-mediated monocyte-endothelial cells adhesion in vitro We used BCECF-AM labeled monocytes to evaluate the effect of fasudil on adhesion of monocytes to Human umbilical vein endothelial cells (HUVECs)

  • The present study demonstrated that Rho kinase (ROCK) inhibitor fasudil attenuated HG-induced increases in vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) expression in HUVECs

Read more

Summary

Introduction

Macrovascular complications including atherosclerosis are the leading causes of morbidity and mortality in patients with diabetes mellitus [1]. Transmigration of monocytes into the subendothelial space and subsequent transformation into macrophagederived foam cells are key events in atherogenesis [2,3] These processes are partly regulated by chemotactic factors such as monocyte chemoattractant protein-1 (MCP-1) and endothelial vascular cell adhesion molecule-1 (VCAM-1) [4,5]. Recent studies suggest that the RhoA/ROCK pathway may contribute to diabetic vascular complications [6,7,8]. Previous studies suggested that the RhoA/ROCK pathway may contribute to vascular complications in diabetes. The present study was designed to investigate whether ROCK inhibitor fasudil could prevent high glucose-induced monocyte-endothelial cells adhesion, and whether this was related to fasudil effects on vascular endothelial cell expression of chemotactic factors, vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call