Abstract
Characterization of discontinuous media is an endeavor that poses great challenge to engineers in practice. Since the inherent defects in cracked domains can substantially influence material resistance and govern its behavior, a lot of work is dedicated to efficiently model such effects. In order to overcome difficulties of material instability problems, one needs to comprehensively represent the geometry of cracks along with their impact on the mechanical properties of the intact material. In the present study, stress-strain results from laboratory experiments on Inada granite was used to derive crack tensor as a tool for the evaluation of fractured domain stability. It was found that the formulations proposed earlier could satisfactorily be employed to attain crack tensor via the invariants of which judgment on cracks population and induced anisotropy is possible. The earlier criteria based on crack tensor analyses were reviewed and compared to the results of the current study. It is concluded that the geometrical parameters calculated using mechanical properties could confidently be used to judge the anisotropy as well as strength of the cracked domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.