Abstract
The critical value of rock failure is determined by irreversible deformation (inelastic deformation, damage, and other internal dissipation) processes and external conditions before rock failure. Nevertheless, a thorough explanation of the mechanism causing cracks in rock material has not yet been provided. The strain energy theory is applied in this work to assess the initiation of rock cracks and investigate the relationship between energy digestion and rock strength. Firstly, the uniaxial compression test was conducted on sandstone samples under quasi-static loading conditions and the results of energy evolution, non-linear cumulative digestion, and stored ultimate energy were obtained. Then, a novel algorithm for assessing the initiation of rock cracks has been put forth. The concept of energy digestion index (EDI), which is the ratio of digested energy over the external loading energy, has been developed to characterize the energy absorption capacity of rock material. The result shows a relationship between the maximum growth rate of energy digestion and the increasing rate of variable elasticity modulus and crack initiation. The mechanical characteristics and peak strength of the rock material are negatively correlated with the EDI. By monitoring the digested energy status, an evaluation of the residual strength is introduced based on the relationships, which will initiate further research into in-situ monitoring and failure prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.