Abstract
Remote sensing methods are now used to assess rockmass characteristics along transportation corridors, in mines and tunnels, and in other areas where rock falls can affect humans and infrastructure. A variety of sensor methods, primarily LiDAR and photogrammetry, have seen recent use with widespread success and state of practice acceptance. Various commercial and custom tools exist to process the resulting data to extract geometry, surface and location based statistics, and to perform kinematic stability assessments. Although there is a widespread need to assess how different sensors and processing workflows actually perform, these are often compared anecdotally solely with the field practices they replace and using site and sensor data unavailable to other researchers.Two principles must be established to move across-the-board comparisons of remote rockmass characterization forward: (i) establishment of accessible, documented test sites, and (ii) test databases that are accessible to all. We propose the establishment of several key sites for equipment tests, including already-studied areas in Europe and North America, as well as an open approach to adding sites and related data to the collection. Site descriptions must include detailed local geology, photographs, LiDAR and/or photogrammetry datasets, and access notes. Second, we describe and provide a prototype data repository for storing this information, and in particular for providing open access to benchmark data into the future. This initiative will allow for meaningful comparisons of sensors and algorithms, and specifically will support better methodologies for benchmarking rock mass data in the geosciences. Data and metadata will be hosted at the www.rockbench.org domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.