Abstract

Abstract. A nonconformity refers to a hiatal surface located between metamorphic or igneous rocks and overlying sedimentary or volcanic rocks. These surfaces are key features with respect to understanding the relations among climate, lithosphere and tectonic movements during ancient times. In this study, the petrological, mineralogical and geochemical characteristics of Variscan basement rock as well as its overlying Permian volcano-sedimentary succession from a drill core in the Sprendlinger Horst, Germany, are analyzed by means of polarization microscopy, and environmental scanning electron microscope, X-Ray diffraction, X-ray fluorescence and inductively coupled plasma mass spectrometry analyses. In the gabbroic diorite of the basement, the intensity of micro- and macro-fractures increases towards the top, indicating an intense physical weathering. The overlying Permian volcanic rock is a basaltic andesite that shows less intense physical weathering compared with the gabbroic diorite. In both segments, secondary minerals are dominated by illite and a mixed-layer phase of illite and smectite (I–S). The corrected chemical index of alteration (CIA) and the plagioclase index of alteration (PIA) indicate an intermediate to unweathered degree in the gabbroic diorite and an extreme to unweathered degree in the basaltic andesite. The τ values for both basaltic andesite and gabbroic diorite indicate an abnormal enrichment of K, Rb and Cs that cannot be observed in the overlying Permian sedimentary rocks. Accompanying minerals such as adularia suggest subsequent overprint by (K-rich) fluids during burial diagenesis which promoted the conversion from smectite to illite. The overall order of element depletion in both basaltic andesite and gabbroic diorite during the weathering process is as follows: large-ion lithophile elements (LILEs) > rare earth elements (REEs) > high-field-strength elements (HFSEs). Concerning the REEs, heavy rare earth elements (HREEs) are less depleted than light rare earth elements (LREEs). Our study shows that features of supergene physical and chemical paleo-weathering are well conserved at the post-Variscan nonconformity despite hypogene alteration. Both can be distinguished by characteristic minerals and geochemical indices. Based on these results, a new workflow to eliminate distractions for paleoclimate evaluation and evolution is developed.

Highlights

  • Nonconformities refer to contact surfaces between different lithologies in the geological record that were produced over long-lasting periods of non-deposition and/or erosion and are of paramount importance for the subdivision and correlation of stratigraphic successions (Catuneanu, 1996)

  • Liang et al.: Rock alteration at the post-Variscan nonconformity stratigraphic sequences and bounding surfaces are assigned to different orders based on their relative importance, which is known as a sequence hierarchy

  • A combined study of mineralogy, petrography and geochemistry was performed on a drill core that penetrates the postVariscan nonconformity on the Sprendlinger Horst

Read more

Summary

Introduction

Nonconformities refer to contact surfaces between different lithologies in the geological record that were produced over long-lasting periods of non-deposition and/or erosion and are of paramount importance for the subdivision and correlation of stratigraphic successions (Catuneanu, 1996). They largely control the geometry of reservoirs for oil, gas and water (Gardner, 1940). For continental nonconformities, the buried paleo-weathered surfaces provide an ideal opportunity to analyze the weathering and climate conditions during exposure (Jian et al, 2019; Zhou et al, 2017) This includes the alteration and deformation of minerals, such as changes in crystal morphology of primary and secondary minerals during the weathering process, which is called supergene alteration (Borrelli et al, 2014). This second overprint during deep burial diagenesis is called hypergene alteration and has to be carefully distinguished from the primary supergene alteration (Dill, 2010)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call