Abstract

Clustering, in data mining, is useful to discover distribution patterns in the underlying data. Clustering algorithms usually employ a distance metric based (e.g., euclidean) similarity measure in order to partition the database such that data points in the same partition are more similar than points in different partitions. In this paper, we study clustering algorithms for data with boolean and categorical attributes. We show that traditional clustering algorithms that use distances between points for clustering are not appropriate for boolean and categorical attributes. Instead, we propose a novel concept of links to measure the similarity/proximity between a pair of data points. We develop a robust hierarchical clustering algorithm ROCK that employs links and not distances when merging clusters. Our methods naturally extend to non-metric similarity measures that are relevant in situations where a domain expert/similarity table is the only source of knowledge. In addition to presenting detailed complexity results for ROCK, we also conduct an experimental study with real-life as well as synthetic data sets to demonstrate the effectiveness of our techniques. For data with categorical attributes, our findings indicate that ROCK not only generates better quality clusters than traditional algorithms, but it also exhibits good scalability properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.