Abstract

An optimal evaluation of adaptive beamforming techniques in a reverberation-limited shallow water environment is presented. A comprehensive simulation, using the sonar simulation toolset (SST) software in conjunction with the generic sonar model (GSRT) software, is used to create realistic beam data complete with target, noise, and reverberation. Adaptive beamforming techniques from the recursive least squares (RLS) family are applied to enhance detection performance via interference rejection. Two techniques are considered: linearly constrained beamforming using the minimum variance distortionless response (MVOR) beamformer and constrained adaptive noise cancelling (ANC) using the joint process least squares lattice (JPLSL) algorithm. Target detection trials, summarized in the form of receiver operator characteristics (ROC), are used to evaluate performance of the two adaptive beamformers. Results demonstrate mixed performance in reverberation-limited shallow water environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.