Abstract

Correlations between responses in visual cortex and perceptual performance help draw a functional link between neural activity and visually guided behavior. These correlations are commonly derived with ROC-based neural-behavioral covariances (referred to as choice or detect probability) using boxcar analysis windows. Although boxcar windows capture the covariation between neural activity and behavior during steady-state stimulus presentations, they are not optimized to capture these correlations during short time-varying visual inputs. In this study, we implemented a matched-filter technique, combined with cross-validation, to improve the estimation of ROC-based neural-behavioral covariance under short and dynamic stimulus conditions. We show that this approach maximizes the area under the ROC curve and converges to the true neural-behavioral covariance using a Poisson spiking model. We also demonstrate that the matched filter, combined with cross-validation, reveals the dynamics of the neural-behavioral covariations of individual MT neurons during the detection of a brief motion stimulus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.