Abstract

We present RobustTP, an end-to-end algorithm for predicting future trajectories of road-agents in dense traffic with noisy sensor input trajectories obtained from RGB cameras (either static or moving) through a tracking algorithm. In this case, we consider noise as the deviation from the ground truth trajectory. The amount of noise depends on the accuracy of the tracking algorithm. Our approach is designed for dense heterogeneous traffic, where the road agents corresponding to a mixture of buses, cars, scooters, bicycles, or pedestrians. RobustTP is an approach that first computes trajectories using a combination of a non-linear motion model and a deep learning-based instance segmentation algorithm. Next, these noisy trajectories are trained using an LSTM-CNN neural network architecture that models the interactions between road-agents in dense and heterogeneous traffic. Our trajectory prediction algorithm outperforms state-of-the-art methods for end-to-end trajectory prediction using sensor inputs. We achieve an improvement of upto 18% in average displacement error and an improvement of up to 35.5% in final displacement error at the end of the prediction window (5 seconds) over the next best method. All experiments were set up on an Nvidia TiTan Xp GPU. Additionally, we release a software framework, TrackNPred. The framework consists of implementations of state-of-the-art tracking and trajectory prediction methods and tools to benchmark and evaluate them on real-world dense traffic datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.