Abstract

Among the separation techniques used in industries, the triboelectric separation of insulating particles using a rotary tube is an effective way employed in the waste recovery of plastic and mineral products. This process, also called free-fall triboelectric separation, is widely used for the sorting of granular mixtures resulting from industrial plastic wastes. Given that the robustness of such a separation process is an important issue, a standard procedure is used for determining the set point and for minimising the process sensitivity of sorting mixed particles of different polymers to changes in the values of some critical factors. The aim of this paper was to analyse the efficiency of the triboelectric separation process of polymers with respect to any slight variation in the values of the most significant factors. Experiments with a sample of high-density polyethylene and polyvinyl chloride plastic granules were carried out on a laboratory experimental bench. Several one-factor-at-a-time experiments, followed by two factorial designs (one composite and the other fractional), were performed based on the following experimental procedure: (1) determination of the variation limits of the input variables; (2) identification of the set point and (3) robustness testing of the process, i.e. testing whether the performance of the system remains high even when the factors vary slightly around the set point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.