Abstract

Recently, wireless power transfer (WPT) technology has attracted much attention and shown rapid development. However, a fundamental challenge emerges in practical applications: how to achieve robust power transfer against the variation of operating conditions, such as the fluctuation of transfer distance, as well as the relative orientation of resonant coils. In this article, we theoretically propose and experimentally demonstrate that the robustness of a parity-time (PT) asymmetric system with unbalanced gain-loss working in a weak coupling region can be improved significantly, compared with that of a PT-symmetric system with balanced gain-loss working in a strong coupling region under the premise that the system works at a fixed optimal frequency. A pure real mode known as bound state in the continuum (BIC) in the weak coupling region of the PT-asymmetric system is adopted to ensure the high efficiency and stability of the WPT and break the limitations of balanced gain-loss of the PT-symmetric system. The better robustness performance originates from the orthogonal state with a pure real eigenmode embedded in the weak coupling region. Further experiments also verify that the PT-asymmetric system can achieve higher efficiency than that of the PT-symmetric system. In addition, we discuss the performance of the WPT system based on the theories of coupled mode theory (CMT) and circuit theory (CT); the BIC in the framework of CMT and a perfect impedance matching condition in the framework of CT for efficient power transfer are consistent. We also conducted power experimental verification of 30 watts, and found the efficiency between the coils can reach over 90% in dynamic scenarios, which meets expectations. The presented framework extends the field of non-Hermitian physics, bridges the gap between the non-ideal PT-symmetric system and a practical engineering application, and introduces a novel WPT mechanism for flexible application scenarios. Our results could provide instructive significance for practical applications of the WPT system in the long term.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.